Abstract

In combination with various salts boric acid, B(OH)3, was shown to be an efficient, weak Lewis acid catalyst in the aqueous dehydration of fructose to 5-hydroxymethylfurfural (HMF) due to strong complexation between the boron atom and the hexoses. In the dehydration of a highly concentrated aqueous fructose solution (30 wt%), a HMF yield of 60% was achieved at 92% fructose conversion and a HMF selectivity of 65% with 100 g L−1B(OH)3 and 50 g L−1sodium chloride in the aqueous phase and methyl-isobutylketone (MIBK) as extracting solvent. Furthermore, the dehydration of glucose resulted in a yield of 14% HMF at 41% glucose conversion after 5 h at similar conditions. These results are highly competitive with currently reported aqueous HMF dehydration systems. In combination with the non-corrosive and non-toxic nature of the boric acid, compared to other well known homogeneous catalysts applicable for the dehydration process (e.g., H2SO4 and HCl), clearly, the boric acid-salt mixture is a very attractive catalyst system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.