Abstract

Complexing agents in Cu chemical mechanical planarization slurries promote dissolution of the copper surface. We explored the effect of two chelating compounds, ammonium oxalate and oxalic acid, with and without hydrogen peroxide, on the dissolution and surface morphology of a Cu(111) surface at neutral pH. Without hydrogen peroxide, static etch rate (SER) measurements were highest for oxalic-acid-containing solutions, but with peroxide, ammonium-oxalate-containing solutions demonstrated the highest rates. The largest anodic and cathodic currents were seen in solutions containing ammonium oxalate and peroxide using cyclic voltammetry. In the presence of oxalic acid, atomic force microscopy revealed a thick layer on the surface, identified as on the basis of X-ray photoelectron spectroscopy measurements, that changed little over time. In the presence of ammonium oxalate, the film was thinner and showed accelerated dissolution. It is proposed that the dissolution processes of oxalate and ammonium operate independently at the same time. In the presence of peroxide, more is created which allows for the formation of more copper oxalate, and also increases the concentration of copper oxide species at the surface, which drives the ammonia complexation reaction. These two events give rise to a large increase in SER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.