Abstract
In recent lower-hybrid current drive experiments on the experimental advanced superconducting tokamak, two lower-hybrid waves are launched simultaneously from different locations with different phase velocities to drive the plasma current. To understand the synergy effects of the two LH waves, the analytical expression for the electron velocity distribution is obtained based on Fuchs' model [Fuchs et al., Phys. Fluids 28(12), 3619–3628 (1985)], which is in good agreement with that obtained by solving the quasi-linear equation numerically via the CQL3D code [R. W. Harvey and M. G. McCoy, in Proceedings of IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada (1992)]. The synergy factor is also obtained analytically. It is found that the existence of two resonant regions may bring more resonant electrons interacting with each wave and the perpendicular dynamics can further enhance the synergy effect by increasing the effective electron temperature, which in turn increases the number of electrons in the resonance with each wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.