Abstract

ABSTRACTLaser surface texturing (LST) followed by an ultrasonic nanocrystalline surface modification (UNSM) process was applied to graphite cast iron to improve the friction and wear behavior. The surface hardness of the UNSM-treated and UNSM + LST-treated specimens was increased significantly compared to the polished and LST-treated specimens. The friction and wear behavior of the specimens was assessed using a ball-on-disk friction tester at an applied load of 10 N and a speed of 5 cm/s in both dry and lubrication conditions. The friction coefficient of the UNSM-, LST-, and UNSM + LST-treated specimens reduced in both dry and lubrication conditions compared to the polished specimen by 64, 30, and 64% and 63, 67, and 75%, respectively. In lubrication condition, the friction coefficient of the UNSM- and LST-treated specimens was further reduced by about 30 and 25% by UNSM + LST processes. In dry condition, the UNSM + LST-treated specimen exhibited a reduction in the friction coefficient of 46% compared to the LST-treated specimen, whereas no reduction in friction coefficient was found compared to the UNSM-treated specimen. The wear resistance of the UNSM-, LST-, and the UNSM + LST-treated specimens was enhanced by 22, 11, and 37% in the dry condition, respectively, whereas minuscule wear was observed in the lubrication condition that was difficult to quantify in our experiment. UNSM and LST processes were effectively combined to improve the friction and wear behavior of graphite cast iron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call