Abstract

Defects and energy offsets at the bulk and heterojunction interfaces of perovskite are detrimental to the efficiency and stability of perovskite solar cells (PSCs). Herein, we designed an amphiphilic π-conjugated ionic compound (QAPyBF4 ), implementing simultaneous defects passivation and interface energy level alignments. The p-type conjugated cations passivated the surface trap states and optimized energy alignment at the perovskite/hole transport layer. The highly electronegative [BF4 ]- enriched at the SnO2 interface featured desired band alignment due to the dipole moment of this interlayer. The planar n-i-p PSC had an efficiency of 23.1 % with Voc of 1.2 V. Notably, the synergy effect elevated the intrinsic endothermic decomposition temperature of the perovskite. The modified devices showed excellent long-term thermal (85 °C) and operational stability at the maximum power point for 1000 h at 45 °C under continuous one-sun illumination with no appreciable efficiency loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.