Abstract

Neuroinflammation caused by microglial activation is a key contributing factor in neurological disorders such as those involving ischaemia. Excess production of reactive oxygen species (ROS) and nitric oxide (NO) stimulates the inflammatory response during ischaemia, significantly damaging cells. Inhibition of inflammatory activation of microglia is a promising potential treatment approach for neurological diseases. In this study, we introduce α-tocopherol and phosphatidylserine (PS) containing liposomes (PST-liposomes) to inhibit the microglial inflammatory response. PS is known to have anti-inflammatory effects on microglia by modulating the microglial phenotype, while α-tocopherol is an antioxidant, known to neutralize ROS. We found that both PS-containing liposomes (PS-liposomes) and PST-liposomes, as compared with phosphatidylcholine containing liposomes, significantly increased viability of hypoxia-treated microglia. The PST-liposomes functioned better than the PS-liposomes and we attribute this superior effect to a synergy between PS and α-tocopherol. This synergic action of PST-liposomes was illustrated in their ability, when incubated with microglia, to reduce NO and pro-inflammatory cytokine (TNF-α) production and increase anti-inflammatory cytokine (TGF-β1) production. Thus, the improved viability of hypoxia-treated microglia when treated with PST-liposomes involved anti-inflammatory effects, including ROS neutralization, as well as induction of a microglial phenotypic change. Our results suggest that PST-liposomes represent a potential therapeutic approach to reducing ischaemic injury in the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.