Abstract
Pt–CeO2 catalysts were prepared by solution combustion synthesis (SCS), a simple and fast one-pot method, using glycine or oxalyl dihydrazide (ODH) as the fuel and Pt chloride or nitrate as the metal precursor. The samples were characterized by ICP-OES, N2 volumetry, XRD, XPS, aberration-corrected (S)TEM, CO-DRIFTS and microRaman spectroscopy. The SCS catalysts were evaluated in CO oxidation and preferential oxidation (PROX) of CO in H2 excess, and compared to Pt/CeO2 and Pt/Al2O3 catalysts prepared by incipient wetness impregnation. The glycine fuel yields better results than ODH in terms of Pt dispersion and catalytic performance. The fresh Cl-containing catalysts consist of PtO nanoparticles poorly active in CO oxidation, while the catalysts synthesized from Pt nitrate contain highly active Ptδ+ (0<δ<2) species in interaction with ceria. Consistently, the most efficient catalyst for H2-free CO oxidation is the one synthesized from glycine and Pt nitrate. For PROX, the selectivity to CO2 is 100% at low temperature and decreases in a similar way for all the Pt–CeO2 catalysts above ca. 100°C. With respect to H2-free conditions, the CO PROX activity of the Pt–CeO2 catalysts is considerably enhanced (activity multiplied by up to 60at 110°C), while the activity gain is comparatively minor for Pt/Al2O3. We conclude that hydrogen, by increasing the mobility of oxygen species at the surface of ceria, promotes the support-assisted pathway of CO oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.