Abstract

Aromatic stacking interactions are one of the most common types of non-covalent interactions. However, their fundamental origins and the ability to accurately predict their stability trends are still an active area of research. The study of aromatic stacking interactions has been particularly challenging. The interaction involves a delicate balance of multiple forces, and the aromatic surfaces can readily adopt different interaction geometries. Thus, the collaborative efforts of theoretical and experimental researchers have been essential to understand and build more accurate predictive models of aromatic stacking interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.