Abstract

During skeletal 1-butene isomerization over ferrierite carbonaceous deposits block 98% of the micropores within 24 h, rendering them effectively inaccessible to reactants, while the catalytic activity improves continuously for 100 h on stream. Ex-situ pyridine adsorption shows that the concentration of conventional Brønsted acid sites in the 10-R channels decreases below the detection threshold of infrared spectroscopy within 2 h. However, the operando addition of the base triethyl amine to the feed quenches the reaction, showing that mediated acidity is necessary. The larger base 2,2,6,6-tetramethyl piperidine only deactivates catalytic activity after several hours because it cannot directly bind to active sites at the sterically restricted pore mouths. The communication of internal Brønsted acid sites to the external reactants via a concerted mechanism involving protonated monoaromatic deposits trapped in the pore mouths explains the promoting effects of coke species in zeolite-catalyzed skeletal butene isomerization. This work presents a consolidated explanation of the synergy of solid acidity, structural confinement, and carbonaceous deposits in zeolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call