Abstract

Photodynamic therapy (PDT) holds great promise as a noninvasive and selective cancer therapeutic treatment in preclinical research and clinical practice; however, it has limited efficacy in the ablation of deep-seated tumor because of hypoxia-associated circumstance and poor penetration of photosensitizers to cancer cells away from the blood vessels. To tackle the obstacles, we propose a therapeutic strategy that synergizes upconversion nanophotosensitizers (UNPSs) with hyperbaric oxygen (HBO) to remodel the extracellular matrix for enhanced photodynamic cancer therapy. The UNPSs are designed to have an Nd3+-sensitized sandwiched structure, wherein the upconversion core serves as light transducers to transfer energy to the neighboring photosensitizers to produce reactive oxygen species (ROS). With HBO, photodynamic process can generate abundant ROS in the intrinsically hypoxic tumor. It is revealed for the first time that HBO-assisted PDT decomposes collagen in the extracellular matrix of tumor and thus facilitates the diffusion of oxygen and penetration of UNPSs into the deeper area of tumor. Such a synergic effect eventually results in a significantly enhanced therapeutic efficacy at a low laser power density as compared with that using UNPSs alone. In view of its good biosafety, the HBO-assisted and UNPSs-mediated PDT provides new possibilities for treatment of solid tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.