Abstract
This work explored the feasibility of synergizing singlet oxygen (1O2) and electron transfer pathway (ETP) during catalytic decomposition of peroxymonosulfate to advance the refractory pollutant mineralization. N doping strategy was employed to synthesize Mn-C-N catalyst with two independent catalytic sites. The results showed that the contribution of 1O2 and ETP to diclofenac removal could be well matched to 56% and 44% in Mn-C-N/PMS oxidation system, respectively. Mechanism studies revealed that 1O2 would generate intermediate products with low ELUMO, which were rapidly transformed via ETP and finally resulted in improved mineralization performance. Under 0.2 g/L Mn-C-N, 50 mg/L diclofenac, 0.4 g/L peroxymonosulfate, and actual water quality conditions, about 100% removal (15 min) and 70% mineralization efficiency (1 h) was achieved. The above non-radical oxidation system was effective for treating livestock wastewater and secondary effluent. This work prospects the synergy of non-radicals for remediating refractory contaminants-laden wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.