Abstract

Increasing the electrical conductivity of carbon fibre reinforced polymers (CFRPs) holds great promises for a range of applications, such as removing the need for metallic meshes in the protection against electromagnetic interference and lightning strikes. Herein, a hybrid method of improving the electrical conductivity of CFRPs by functionalizing carbon fibres with vertical graphene (VG) and modifying the matrix with silver nanowires (AgNWs) is introduced. The results revealed that the hybrid method increased the through-thickness and the in-plane electrical conductivities by almost 38 times and 39%, respectively, without adversely affecting mechanical properties. Finite element modelling revealed that the unprecedented synergy is due to the significant reduction in the contact resistance between carbon fibres by the combination of VGs on the fibres and the AgNWs in the matrix. Computational modelling showed that the electrical conductivity increase can reduce the joule heat density by around one thousand times under simplified lightning strike conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.