Abstract

Solar-driven wastewater purification technology is a promising candidate to solve the hazards of water contaminants. However, it is difficult for most of particulate photocatalysts to maintain durable photoactivity due to its micro/nano size. Herein, a synergistically electronic interacted membrane catalyst with large extending area and high pollutant capture capacity was processed based on a highly active CdS/TiO2 heterojunction and ferroelectric polyvinylidene fluoride for achieving highly efficient Cr6+-to-Cr3+ (CTC) reduction (1.6×10−2 min−1) and synchronous decomposition of organic matters (methylene blue (1.2×10−2 min−1) and bisphenol A (0.6×10−2 min−1)) under simulated sunlight (SSL, 74.1 mW·cm−2) irradiation following a durably steady photoactivity even being recycled for 20 times, which effectively avoided the hazards of secondary pollution. Subsequently, a tailor-made panel wastewater purification system was first built based on this membrane catalyst to drive CTC reduction and synchronous organic matter degradation, and high-efficiency purification performance was presented on this panel system under multi-field drive of light-activation and piezoelectric polarization. This work provides an insight for photocatalytic wastewater purification through membrane catalyst assisted panel technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call