Abstract

Local and decentralized H2 O2 production via a piezoelectrical process promises smart biological utilization as well as environmental benefits. However, stable, bio/environmentally safe, and easily applied H2 O2 generation materials are still lacking. Here, we report a novel flexible H2 O2 generation polymeric film composed of catalytically inert PVDF-HFP (Poly(vinylidene fluoride-co-hexafluoropropylene)) matrix and SiO2 nanoparticle fillers. The film is bio-/environmentally benign at resting states, but effectively produces H2 O2 upon ultrasonic motivation at a production rate of 492 μmol in one hour. Experimental and simulation methods in combination indicate that the effective H2 O2 generation capabilities stem from the synergistic existence of piezoelectrical fields and the air-liquid-solid three-phase regions around the porous film. The chemical conversions are motivated by the adsorbed charges. The silicon hydroxyl groups properly stabilize the *OOH intermediate and facilitate the chemical conversions of 2e- ORR of ambient O2 . We expect the report to inspire H2 O2 piezoelectrical generation materials and promote the novel production strategies of H2 O2 as well as piezoelectrical functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call