Abstract

Single Pd atom doped Au23Pd1 clusters stabilized by polyvinylpyrrolidone (Au23Pd1:PVP) were selectively synthesized by kinetically controlled coreduction of the Au and Pd precursor ions. The geometric structure of Au23Pd1:PVP was investigated by density functional theory calculation, aberration-corrected transmission electron microscopy, extended X-ray absorption fine structure analysis, Fourier transform infrared spectroscopy of adsorbed CO, and hydrogenation catalysis. These results showed that Au23Pd1:PVP takes polydisperse but the same atomic arrangements as undoped Au24:PVP while exposing all the atoms including the Pd atom on the surface. Au23Pd1:PVP exhibited a significantly higher catalytic activity than Au24:PVP for the aerobic oxidation of p-substituted benzyl alcohols. The kinetic studies showed that the rate-determining step was the hydride abstraction from the α-carbon of the alkoxides for both systems. The activation energy for hydride abstraction by Au23Pd1:PVP was lower than that by Au24:PVP, indicating that the doped Pd atom acts as the active center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call