Abstract
Meso- or micro-scale(or insect-scale) robots that are capable of realizing flexible locomotion and/or carrying on complex tasks in a remotely controllable manner hold great promise in diverse fields, such as biomedical applications, unknown environment exploration, in situ operation in confined spaces, and so on. However, the existing design and implementation approaches for such multifunctional, on-demand configurable insect-scale robots are often focusing on their actuation or locomotion, while matched design and implementation with synergistic actuation and function modules under large deformation targeting varying task/target demands are rarely investigated. In this study, through systematical investigations on synergistical mechanical design and function integration, we developed a matched design and implementation method for constructing multifunctional, on-demand configurable insect-scale soft magnetic robots. Based on such a method, we report a simple approach to construct soft magnetic robots by assembling various modules from the standard part library together. Moreover, diverse soft magnetic robots with desirable motion and function can be (re)configured. Finally, we demonstrated (re)configurable soft magnetic robots shifting into different modes to adapt and respond to varying scenarios. The customizable physical realization of complex soft robots with desirable actuation and diverse functions can pave a new way for constructing more sophisticated insect-scale soft machines that can be applied to practical applications soon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.