Abstract

Forest aboveground biomass (AGB, Mg/ha) measurement is one of the key indicators for carbon storage evaluation. Remote sensing techniques have been widely employed to predict forest AGB. However, little attention has been paid to the implications involved in the preprocessing of satellite data. In this work, considering the areas of low forest AGB in our survey plots, we explored the implications of employing atmospheric correction and speckle filtering with Sentinel-1 (S1) synthetic aperture radar (SAR) and Sentinel-2 (S2) to predict forest AGB using multiple linear regression (MLR) and extreme gradient boosting (XGBoost). In the present study, the types of plots examined included oaks (Quercus spp.), Chinese firs (Cunninghamia lanceolata), and Masson pines (Pinus massoniana), and all of the plots were investigated. Specifically, the feature variables related to S1 (dual polarization and texture measures) and S2 (spectral bands) were modeled individually, and 16 feature sets, including different combinations of S1 and S2 based on different preprocessing measures, were established using MLR and XGBoost. The results show that speckle filtering and atmospheric correction marginally influenced the capacity of the S2 spectral bands, the SAR dual-polarization backscatter, and the SAR-based textural measures in predicting the AGB in our survey plots. The associations between the speckle-filtered and unfiltered SAR images and the S2 Top-of-Atmosphere and Bottom-of-Atmosphere products were considerably strong. Additionally, the texture models generally showed better performances than the raw SAR data. Ultimately, the groups that only encompassed the S2 spectral bands were the best-performing groups among the 16 feature sets, while the groups that included only S1-based data generally performed the worst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call