Abstract
The electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is an emerging technique to address energy shortages and climate change. Thus, developing efficient but low-cost electrocatalysts is important. In the present paper, we applied γ-graphyne (γGy) doped with B, N, O, P and S as NRR catalysts, and the activities of these catalysts were studied by extensive density functional theory (DFT) calculations. Our results suggest that single N, O, P and S doping are not effective in enhancing γGy NRR activity, and the γGy with B(sp2)-C(sp)-B(sp) configuration has excellent overall NRR activity with a record low limiting potential (−0.12 V), good conductivity, low hydrogen evolution reaction activity and high dynamic stability. We revealed that the sp-C directly connected to active sp-B can be an energy buffer that makes a flat potential energy surface. Overall, our research provides several good NRR catalysts by carefully controlling the doping sites and provides a new strategy for further development of metal-free catalysts for the NRR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.