Abstract

In this work, we tailor facile hydrogels nanocomposite (HNC) based on sustainable karaya gum for water treatment. Karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ silver nanoparticle (KG-cl-P(AAm-co-AN)@AgNPs) HNC were made by an aqueous free radical in situ crosslink copolymerization of acrylamide (AAm) and acrylic acid (AA) in aqueous solution of KG-stabilized AgNPs. FTIR, XRD, DTA–TGA, SEM, and TEM were used to characterize HNC. The hydrogels' swelling, diffusion, and network characteristics were investigated. The removal efficiency of HNC was found to be 99% at pH 8 for a crystal violet (CV), dose of 0.02 g after 1 h. Dye adsorption by these hydrogels was also investigated in terms of isotherms, and kinetics. The dye's exceptionally high adsorption capacity on HNC for CV removal is explained by H-bonding interactions, as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules (Qmax, 1000 mg/g). The HNC can be regenerated with 0.1 M HCl and reused at least 10 times maintaining over 68% dye removal. The loading of AgNPs into the polymeric matrix of KG-cl-P(AAm-co-AN) significantly increases the removal percentage of CV dye from its aqueous solution, according to this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call