Abstract

Plant and microbial processes exert control on the stoichiometry of available nutrients, potentially influencing forest ecosystem responses to nitrogen enrichment and other perturbations that alter resource availability. We tested whether an excess of one nutrient influenced the available pool of another, to learn the net outcome of various feedbacks on mineralization and uptake processes. We examined nitrogen and phosphorus availability (assayed with buried ion-exchange resin strips) in the first year of fertilizing northern hardwood forests with 30 kg/ha N, 10 kg/ha P, or N and P together. Fertilizing with a single nutrient raised the availability of the added nutrient and had no detectable effect on availability of the other nutrient. However, resin-available N was raised substantially more by adding N+P than it was by adding N alone. This effect of N+P must be the result of either reduced biotic uptake of N or increased mineralization of N, and suggests that N loss following forest disturbances will be enhanced in cases where the availability of both N and P are increased. That P interacts with N to enhance N availability, by whatever mechanism, could help explain observations of N and P co-limitation in ecosystems and calls attention to the need to carefully elucidate mechanisms underlying co-limitation of forest productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.