Abstract
Taking advantage of endogenous Ca2+ to upregulate intramitochondrial Ca2+ level has become a powerful mean for mitochondrial dysfunction-mediated tumor therapy. However, the Ca2+ entered into mitochondria is limited ascribing to the uncontrollability and non-selectivity of endogenous Ca2+ transport. It remains a great challenge to make the maximum use of endogenous Ca2+ to ensure sufficient Ca2+ overloading in mitochondria. Herein, we smartly fabricate an intracellular Ca2+ directional transport channel to selectively transport endogenous Ca2+ from endoplasmic reticulum (ER) to mitochondria based on cascade release nanoplatform ABT-199@liposomes/doxorubicin@FeIII-tannic acid (ABT@Lip/DOX@Fe-TA). In tumor acidic microenvironment, Fe3+ ions are firstly released and reduced by tannic acid (TA) to Fe2+ for ROS generation. Subsequently, under the NIR light irradiation, the released ABT-199 molecules combine with ROS contribute to the formation of IP3R-Grp75-VDAC1 channel between ER and mitochondria, thus Ca2+ ions are directionally delivered and intramitochondrial Ca2+ level is significantly upregulated. The synergetic ROS generation and mitochondrial Ca2+ overloading effectively intensifies mitochondrial dysfunction, thereby achieving efficient tumor inhibition. This work presents a new insight and promising avenue for endogenous Ca2+-involved tumor therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.