Abstract
DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage sites and serves as a marker for DSBs. DSB repair primarily occurs through Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). NHEJ directly ligates DNA ends, employing proteins such as DNA-PKcs, while HR, involving proteins such as Rad54, uses a sister chromatid template for accurate repair and functions in the S and G2 phases of the cell cycle. Both pathways are crucial, as illustrated by the IR sensitivity in cells lacking DNA-PKcs or Rad54. We generated mouse embryonic stem (mES) cells which are knockout (KO) for DNA-PKcs and Rad54 to explore the combined role of HR and NHEJ in DSB repair. We found that cells lacking both DNA-PKcs and Rad54 are hypersensitive to X-ray radiation, coinciding with impaired 53BP1 focus resolution and a more persistent G2 phase cell cycle block. Additionally, mES cells deficient in DNA-PKcs or both DNA-PKcs and Rad54 exhibit an increased nuclear size approximately 18-24 h post-irradiation. To further explore the role of Rad54 in the absence of DNA-PKcs, we generated DNA-PKcs KO mES cells expressing GFP-tagged wild-type (WT) or ATPase-defective Rad54 to track the Rad54 foci over time post-irradiation. Cells lacking DNA-PKcs and expressing ATPase-defective Rad54 exhibited a similar phenotypic response to IR as those lacking both DNA-PKcs and Rad54. Despite a strong G2 phase arrest, live-cell imaging showed these cells eventually progress through mitosis, forming micronuclei. Additionally, mES cells lacking DNA-PKcs showed increased Rad54 foci over time post-irradiation, indicating an enhanced reliance on HR for DSB repair without DNA-PKcs. Our findings underscore the essential roles of HR and NHEJ in maintaining genomic stability post-IR in mES cells. The interplay between these pathways is crucial for effective DSB repair and cell cycle progression, highlighting potential targets for enhancing radiotherapy outcomes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.