Abstract
Supporting materials for electrocatalysts must exhibit relative chemical inertness to facilitate unimpeded movement of gas, and demonstrate electrical conductivity to promote efficient electron transfer to the catalyst. Conventional catalyst electrodes, such as glassy carbon, carbon cloths, or Ni foam, are commonly employed. However, the challenge lies in the limited stability observed during testing due to the relatively weak adhesion between the catalyst and the electrode. Addressing this limitation is crucial for advancing the stability and performance of catalyst-electrode systems in various applications. Here, we suggest a novel fabrication method for a freestanding conducting film, accomplished through gelation, incorporating 1T-MoS2 and graphene oxide. 1T-MoS2 nanosheets play a crucial role in promoting the reduction of graphene oxide (GO) on the Zn foil. This contribution leads to accelerated film formation and enhanced electrical conductivity in the film. The synergistic effect also enhances the film's stability as catalyst supports. This study provides insights into the effective utilization of MoS2 and graphene oxide in the creating of advanced catalyst support systems with potential applications in diverse catalytic reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.