Abstract

Herein, we synthesized in-situ Zr-doped Fe2O3 NRs photocatalyst by successive simple hydrothermal and air quenching methods. The synergistic roles of CoOx (1 wt%) and Zr-doping on bacteria inactivation and model organic pollutants over Fe2O3 NRs photocatalyst were studied in detail. Initially, rod-like Zr ((0–8) %)-doped Fe2O3 NRs were produced via a hydrothermal method. CoOx was loaded onto the Zr ((0–8) %)-doped Fe2O3 NRs) surface by a wet impregnation approach. The Zr-doping conditions and CoOx loadings were judiciously optimized, and a highly photoactive CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst was developed. The CoOx(1 wt%) loaded Zr(6%)-doped Fe2O3 NRs photocatalyst revealed 99.4% inactivation efficiency compared with (0, 4 and 8)% Zr-doped Fe2O3 NRs, respectively. After CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst treatment, Bio-TEM images of bacterial cells showed extensive morphological deviations in cell membranes, compared with the non-treated ones. Additionally, the optimum CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst exhibited 99.2% BPA and 98.3% orange II dye degradation after light radiation for 3 h. This work will provide a rapid method for the development of photostable catalyst materials for bacterial disinfection and organic degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call