Abstract
Antibiotics and heavy metals are frequently detected simultaneously in aquatic environment. In this study, we investigated the removal performance of biochar modified with nano-hydroxyapatite (nHAP, nHAP@biochar) on tylosin (TYL) /sulfamethoxazole (SMX) and Cu(II) simultaneously. Six nHAP@biochars were prepared with different feedstock and nHAP and biomass ratios. The influences of feedstock and nHAP and biomass ratios, interaction of TYL/SMX and Cu(II) and thermodynamic study were investigated. The adsorption quantities on nHAP@biochars prepared by wood-processing residues were higher than by Chinese medicine residues. The adsorption amounts of TYL decreased with the addition of Cu(II), while the adsorption quantities of SMX increased. The adsorptions of Cu(II) were promoted by TYL and changed slightly with the increasing of SMX. Specific surface area and pore size were two of the main factors influencing the adsorption capacities of nHAP@biochars. According to density functional theory, nHAP@biochar-TYL-Cu and nHAP@biochar-Cu-SMX were more existed in the systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.