Abstract
Due to the enormous threat of pollution by heavy metal ions and organics, the effective removal of HMIs-organic complexes from various wastewater is of vital importance. In this study, synergistic removal of Cd(II) and para-aminobenzoic acid (PABA) by combined permanent magnetic anion-/cation-exchange resin (MAER/MCER) was examined in batch adsorption experiments. The Cd(II) adsorption isotherms fitted the Langmuir model at all tested conditions, suggesting a monolayer adsorption nature in both the sole and binary systems. Moreover, the Elovich kinetic model fitting demonstrated a heterogeneous diffusion of Cd(II) by the combined resins. At the organic acids (OAs) concentration of 10 mmol/L (molar ratio of OAs: Cd = 20:1), the adsorption capacities of Cd(II) by MCER decreased by 26.0, 25.2, 44.6, and 28.6%, respectively, under the coexistence of tannic acid, gallic acid, citric acid and tartaric acid, indicating the high affinity of MCER towards Cd(II). The MCER displayed high selectivity towards Cd(II) in the presence of 100 mmol/L of NaCl, with the adsorption capacity of Cd(II) decreasing by 21.4%. The “salting out” effect also promoted the uptake of PABA. Decomplexing-adsorption of Cd(II) by MCER and selective adsorption of PABA by MAER were proposed as the predominant mechanism for the synergistic removal of Cd(II) and PABA from the mixed Cd/PABA solution. The PABA bridging on MAER surface could promote the uptake of Cd(II). The combined MAER/MCER showed excellent reusability during five reuse cycles, indicative of the great potential in the removal of HMIs-organics from various wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.