Abstract

Little information exists concerning differing levels of regulation occurring during human megakaryocyte development. We hypothesize that megakaryocytic proliferation and maturation is controlled by two, synergistic regulatory factors. One, megakaryocyte colony-stimulating activity, is an obligate requirement for colony formation and drives the development of relatively immature cells. Megakaryocyte colony-stimulating activity is a functional component of the human recombinant proteins, interleukin 3 or GM-CSF. Human recombinant growth factors, interleukin 1, interleukin 6, or crythropoietin, do not effect megakaryocyte development either alone or in combination with interleukin 3. Full maturation requires a second synergistic activity which increases megakaryocyte number, size, and cytoplasmic and antigenic content. In culture, this synergistic regulator augments maturation by increasing the number of colonies, colony cellularity, and size. In suspension cultures, this cofactor increases megakaryocyte cytoplasmic and antigenic content, and shifts the morphological distribution from immature to mature megakaryocytes. Finally, this activity also increases the number of antigen positive megakaryocytes, either by stimulating proliferation or conversion of antigen-negative to antigen-positive cells. Comparative studies of megakaryocytic regulation suggests that this in vitro regulator mimicks some of the known effects of thrombopoietin in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.