Abstract
Cystathionine-β-synthase (CBS) catalyzes the condensation of serine and homocysteine to form cystathionine, an intermediate step in the synthesis of cysteine. We previously described essential transactivating roles for specificity protein 1 (Sp1), Sp3, nuclear factor Y (NF-Y), and USF-1 in the regulation of the CBS-1b promoter. Differential binding of Sp1/Sp3 to the CBS-1b promoter due to differences in Sp1/Sp3 phosphorylation, and Sp1/Sp3 synergism with NF-Y might, in part, explain cell-specific patterns of CBS expression. In this report, the roles of various NF-YA isoforms in influencing cell-specific differences in CBS gene expression were determined in HT1080 and HepG2 cells. Seven unique NF-YA isoforms were detected in HT1080 by reverse transcriptase-PCR (RT-PCR) and DNA sequencing, characterized by deletions in the glutamine-rich and/or serine/threonine-rich domains. Only four of the seven NF-YA isoforms were found in HepG2 cells. The six alternatively spliced NF-YA isoforms all showed significantly less synergistic transactivation of the CBS-1b promoter with Sp1 than wild-type NF-YA, as determined by cotransfections in Drosophila SL2 cells with NF-YB and NF-YC. Further, all six alternatively spliced NF-YA isoforms inhibited the synergistic transactivation of the CBS-1b promoter by wild-type NF-Y and Sp1. Thus, the cellular distributions of these alternatively spliced NF-YA isoforms could impart an important cell-specific component to CBS transcriptional regulation, by virtue of their abilities to directly synergize with Sp1/Sp3 and interfere with transactivation of the CBS-1b promoter by wild-type NF-Y. Characterization of CBS promoter structure and function should clarify the molecular bases for variations in CBS gene expression in genetic diseases and the relationship between CBS and Down's syndrome (DS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.