Abstract

Thousands of differentially expressed genes (DEGs) have been identified in rice under drought stress conditions. However, the regulatory mechanism of these DEGs remains largely unclear. Here, we report an interplay between histone H3K4me3 modification and transcription factor OsbZIP23 in the regulation of a dehydrin gene cluster under drought stress conditions in rice. When the H3K4me3 modification level was increased, the dehydrin gene expression levels were increased, and the binding levels of OsbZIP23 to the promoter of the dehydrin genes were also enhanced. Conversely, the H3K4me3 modification and dehydrin gene expression levels were downregulated in the osbzip23 mutant under drought stress conditions. Our study uncovers a collaboration between transcription factor and H3K4me3 modification in the regulation of drought-responsive genes, which will help us to further understand the gene regulation mechanism under stress conditions in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.