Abstract

Unconjugated bilirubin (UCB) induces both apoptosis and necrosis in neurons. To investigate the role of caspases and excitotoxicity in UCB-induced cell death, we exposed NT2-N neurons to 5 microM UCB (a concentration known to induce apoptosis) or 2 microM staurosporine (positive apoptosis control) and investigated the effects of treatments with the specific caspase-3 inhibitor, zDEVD.FMK (20 and 100 microM), or the general caspase inhibitor, zVAD.FMK (20 and 100 microM), and/or the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (10 microM) during a 24- or 48-h exposure. UCB increased caspase-3 activity 2.3-fold after 6 h. Despite this, treatment with zDEVD.FMK did not prevent cell death. zVAD.FMK enhanced neuronal survival by reducing apoptotic nuclear fragmentation, while MK-801 enhanced survival by reducing apoptotic nuclear condensation; both without affecting the MTT assays. Combined treatment reduced both apoptotic morphologies (without affecting necrosis), and this effect was also reflected in the MTT assays [corrected] We conclude that NMDA receptor-mediated pathways and caspase-mediated pathways are involved in UCB-induced cell death in human NT2-N neurons. Concomitant inhibition of both pathways results in synergistic protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call