Abstract

As a rapid, highly sensitive, and user-friendly technique, surface-enhanced Raman scattering (SERS) has an extraordinary appeal to home self-test of COVID-19 during the post pandemic era. However, most of the existing SERS substrates have been still criticized in stability, repeatability, and sample enrichment. To address these obstacles, a novel non-metallic SERS substrate with porous surfaces and array geometry was developed by in-situ growing ZIF-67 particles on two-dimensional violet phosphorus (VP) matrix. Chemical enhancement was prominently promoted by the synergistic photoinduced charge transfer resonance in the hybrid band structure of the ZIF-67@VP substrate, facilitating a noble metal-similar enhancement factor of 6.11 × 107. The biocompatible ZIF-67@VP porous array with attractive enhancement capability and high anchoring efficiency was further utilized to monitoring SARS-CoV-2 spike protein in practical saliva samples based on a sandwich immunostructure, achieving a limit of detection of 1.7 ng/mL assisted by black phosphorus nanosheets. This nonmetallic immunoassay strategy with exceptional sensitivity and specificity is predicted to extend the utilization of SERS obstacle in daily infectious disease screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.