Abstract
Ferroptosis is identified as a novel type of cell death with distinct properties involved in physical conditions and various diseases, including cancers. It is considered that ferroptosis provides a promising therapeutic strategy for optimizing oncotherapy. Although erastin is an effective ferroptosis trigger, the potential of its clinical application is largely restricted by its poor water solubility and concomitant limitations. To address this issue, an innovative nano platform (PE@PTGA) that integrated protoporphyrin IX (PpIX) and erastin coated with amphiphilic polymers (PTGA) to evoke ferroptosis and apoptosis is constructed and exemplified using an orthotopic hepatocellular carcinoma (HCC) xenograft mouse model as a paradigm. The self-assembled nanoparticles can enter HCC cells and release PpIX and erastin. With light stimulation, PpIX exerts hyperthermia and reactive oxygen species to inhibit the proliferation of HCC cells. Besides, the accumulated ROS can further promote erastin-induced ferroptosis in HCC cells. In vitro and in vivo studies reveal that PE@PTGA synergistically inhibits tumor development by stimulating both ferroptosis- and apoptosis-related pathways. Moreover, PE@PTGA has low toxicity and satisfactory biocompatibility, suggesting its promising clinical benefit in cancer treatments. This article is protected by copyright. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.