Abstract
There is significant interest in the development of rechargeable high-energy density batteries which utilize lithium metal anodes. Recently, fluoroethylene carbonate (FEC) and lithium difluoro(oxalate)borate (LiDFOB) have been reported to significantly improve the electrochemical performance of lithium metal anodes. This investigation focuses on exploring the synergy between LiDFOB and FEC in carbonate electrolytes for lithium metal anodes. In ethylene carbonate (EC) electrolytes, LiDFOB is optimal when used in high salt concentrations, such as 1.0 M, to improve the electrochemistry of the lithium metal anode in Cu||LiFePO4 cells. However, in FEC electrolytes, LiDFOB is optimal when used in lower concentrations, such as 0.05 – 0.10 M. From surface analysis, LiDFOB is observed to favorably react on the surface of lithium metal to improve the performance of the lithium metal anode, in both EC and FEC-based electrolytes. This research demonstrates progress towards developing feasible high-energy density lithium-based batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.