Abstract

Extensive research is underway to process viable electrode materials for energy storage and hydrogen production. This study focuses on synthesizing Ag-MOF and V2CTx, followed by their combination in a 50/50 wt% ratio to produce Ag-MOF@V2CTx composite. Utilizing a three-electrode design, Ag-MOF@V2CTx exhibits specific capacitance 2180 Cg-1 at current density of 2.0 A/g. BET testing reveals a significant specific surface area of 147 m2/g, enhancing electrochemical performance. The supercapattery which is constructed with Ag-MOF@V2CTx and activated carbon, yields a charge specific capacity of 283 Cg-1. The Ag-MOF@V2CTx//AC configuration achieves a power density of 1230 Wkg-1 and energy density of 75.12 Whkg−1. Remarkably, behind 10,000 GCD cycles, Ag-MOF@V2CTx device retains 85 % of its capacity. Moreover, among all composites evaluated in (HER), Ag-MOF@V2CTx exhibits the lowest overpotential (119 mV). These findings underscore the significance of Ag-MOF@V2CTx as electrode materials for energy storage devices and various energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.