Abstract

Combination of oxidation processes are one of the most promising humic acid treatment technologies. Single oxidant or even two oxidants in advance oxidation process can hardly achieve satisfactory removal efficiency of refractory organic matter, mainly humic acid, in the treatment process of reverse osmosis concentrates from landfill leachate. To solve this problem, this study investigated the synergistic degradation of Humic acid (HA) using a Cu and Co supported on carbon catalyst (CuCo/C) in a Hydrogen peroxide (H2O2) with ozone (O3) system. The catalyst was characterized by performing SEM, XRD, BET, XPS and FTIR technologies. UV–vis spectra, 3D Excitation Emission Matrix Spectra (3D-EEM) and gas chromatography-mass spectrometry (GC–MS) were applied for exploring degradation mechanism of HA. To further understand the oxidation mechanism, electron paramagnetic resonance (EPR) was used to evaluate the generation of hydroxyl (·OH) and superoxide radicals (O2·-). As a result, CuCo/C catalyst possessed stable catalytic performance for HA degradation with a wide pH range from 5 to 8, while T = 40 °C,catalyst dosage of 2.4 g/L,O3 intake rate of 0.15 g/min and H2O2 dosage of 1.92 mL/L, the degradation rate of total organic carbon (TOC) achieved 40–46.5 mg·L−1min−1. As affirmed by the EPR, ·OH and O2·- were effectively generated with addition of the CuCo/C catalyst. Degradation performance of UV254 proved that the catalytic activity can still be maintained above 95% with removal rate of 82% after 5 cycles reuse. GC-MS shows that the oxidation products mainly consist of amide, benzoheterocyclic ring and carboxylic acid. This work promotes an effective method for degrading HA, which has the potential for satisfactory application in landfill leachate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call