Abstract

As an important source of arsenic (As) pollution in mine drainage, arsenopyrite undergoes redox and adsorption reactions with dissolved As, which further affects the fate of As in natural waters. This study investigated the interactions between dissolved As(III) and arsenopyrite and the factors influencing the geochemical behavior of As, including initial As(III) concentration, dissolved oxygen and pH. The hydrogen peroxide (H2O2) and hydroxyl radical (OH•) generated from the interaction between Fe(II) on arsenopyrite surface and oxygen were found to facilitate the rapid oxidation of As(III), and the production of As(V) in the reaction system increased with increasing initial As(III) concentration. An increase of pH from 3.0 to 7.0 led to a gradual decrease in the oxidation rate of As(III). At pH 3.0, the presence of As(III) accelerated the oxidation rate of arsenopyrite; while at pH 5.0 and 7.0, As(III) inhibited the oxidative dissolution of arsenopyrite. This work reveals the potential environmental process of the interaction between dissolved As(III) and arsenopyrite, and provides important implications for the prevention and control of As(III) pollution in mine drainage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call