Abstract

We fabricate Bi1−x-yPbyCu1−xSeO (x = 0, 0.03, 0.06, y = 0, 0.10) samples via 4 min-microwave synthesis combined with 5 min-spark plasma sintering. The phase composition, microstructure, valence, and electrical and thermal transport properties of the samples are investigated at 298–873 K. Pb doping provides impurity carriers and increases the concentration to 0.9–3.0 × 1020 cm-³ . Bi and Cu vacancy could provide a carrier transport channel to reduce carrier scattering probability, leading to improved mobility. Twin crystals, stacking faults, and grain boundary segregation are observed in Bi0.87Pb0.10Cu0.97SeO on scanning transmission electron microscopy. Bi and Cu vacancy increase the sample point defects in Pb-doped or undoped samples which results in a decrease in lattice thermal conductivity. The lattice thermal conductivity of Bi0.87Pb0.10Cu0.97SeO is decreased to an extremely low value of 0.13 Wm−1 K−1 and a maximum ZT value of 1.09 is achieved at 873 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call