Abstract

Extensive exploration is required to deploy mineralization as a tool to develop low-cost yet efficient sustained drug release systems. Unlike previous studies which directly incorporated drug components in mineralized products, we propose an emerging approach to synthesizing drug-loaded CaCO3 composites, relying on the synergistic occlusion of the molecular solutions comprising both the alginate hydrogel matrices and the associated drug (doxorubicin) in the course of mineralization. Independent tools including a scanning electron microscope and adsorption isotherm were employed to characterize the lyophilized composites, which led to the conclusion that the anticancer drug doxorubicin (DOX) was uniformly dispersed in the hydrogel matrices as a molecular solution. The occlusion strategy led to CaCO3-based composites with high loads and sustained and pH-responsive release of DOX. Considering many drug molecules can form molecular solutions with polymeric components, we find that the synergistic occlusion can become a general approach to designing smart drug delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.