Abstract

Porous materials with d3 electronic configuration open metal sites have been proved to be effective adsorbents for N2 capture and N2 /O2 separation. However, the reported materials remain challenging to address the trade-off between adsorption capacity and selectivity. Herein, we report a robust MOF, MIL-102Cr, that features two binding sites, can synergistically afford strong interactions for N2 capture. The synergistic adsorption site exhibits a benchmark Qst of 45.0 kJ mol-1 for N2 among the Cr-based MOFs, a record-high volumetric N2 uptake (31.38 cm3 cm-3 ), and highest N2 /O2 selectivity (13.11) at 298 K and 1.0 bar. Breakthrough experiments reveal that MIL-102Cr can efficiently capture N2 from a 79/21 N2 /O2 mixture, providing a record 99.99 % pure O2 productivity of 0.75 mmol g-1 . In situ infrared spectroscopy and computational modelling studies revealed that a synergistic adsorption effect by open Cr(III) and fluorine sites was accountable for the strong interactions between the MOF and N2 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call