Abstract

In recent years, the concept of combined therapy using gold hybrid nanomaterials has been broadly adopted to pioneer new anticancer treatments. However, their synergistic anticancer effects have yet to be thoroughly investigated. Herein,a hybrid gold nanobipyramid nanostructure coated with molybdenum disulfide (MoS2) semiconductor (AuNBPs@MoS2) was proposed as a smart nanozyme for anticancer therapy and two-photon bioimaging. The hybrid material showed dramatically enhanced localized surface plasmon resonance property under excitation owing to its anisotropic nature, coupled with the rich electron density in MoS2, resulting in the superior in situ photogeneration of reactive oxidative species (ROS - 1O2, •OH). We demonstrated that the synergistic effect of enhanced photothermal conversion and generation of ROS could increase the anticancer effect of AuNBPs@MoS2. Two-photon luminescence imaging confirmed that AuNBPs@MoS2 was successfully internalized in cancer cells and that simultaneous anticancer treatments based on catalytic and photothermal therapy could be achieved. This study highlighted, for the first time, a novel approach of plasmon-mediated powerful anticancer therapy and imaging via the unprecedented combination of anisotropic AuNBPs and two-dimensional MoS2 material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.