Abstract
AbstractRare earth elements (REEs) are vital in high‐tech industries and defense due to their strategic significance. Crafting an efficient membranes channel for REE separation poses a significant challenge. Employing 2‐methylimidazole‐hydrolyzed OH−, dopamine polymerization is initiated and then Zn2+ coordinates with 2‐methylimidazole on PDA surfaces. The confined symbiotic reaction yields 2D vertical heterojunctions of GO/ZIF‐8/PDA (G/Z/P). During separation, partially dehydrated smaller hydrated lanthanide ions preferentially access interlayers, expanding and stabilizing the interlayer space by coordinating with PDA, thus excluding larger hydrated scandium ions from the membranes. Some scandium ions entering interlayer channels are sequestered by N in size‐matched ZIF‐8 pores. This distinctive mechanism facilitates selective scandium separation from other REEs (other REEs/Sc selectivity ≈68.73), achieving nearly complete Sc3+ rejection in a single step. The methodology offers unprecedented insights into precise nano‐space material synthesis, indicating promising strides in advancing scandium production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.