Abstract
Visually restoring underwater scenes primarily involves mitigating interference from underwater media. Existing methods ignore the inherent scale-related characteristics in underwater scenes. Therefore, we present the synergistic multi-scale detail refinement via intrinsic supervision (SMDR-IS) for enhancing underwater scene details, which contain multi-stages. The low-degradation stage from the original images furnishes the original stage with multi-scale details, achieved through feature propagation using the Adaptive Selective Intrinsic Supervised Feature (ASISF) module. By using intrinsic supervision, the ASISF module can precisely control and guide feature transmission across multi-degradation stages, enhancing multi-scale detail refinement and minimizing the interference from irrelevant information in the low-degradation stage. In multi-degradation encoder-decoder framework of SMDR-IS, we introduce the Bifocal Intrinsic-Context Attention Module (BICA). Based on the intrinsic supervision principles, BICA efficiently exploits multi-scale scene information in images. BICA directs higher-resolution spaces by tapping into the insights of lower-resolution ones, underscoring the pivotal role of spatial contextual relationships in underwater image restoration. Throughout training, the inclusion of a multi-degradation loss function can enhance the network, allowing it to adeptly extract information across diverse scales. When benchmarked against state-of-the-art methods, SMDR-IS consistently showcases superior performance. Our code is available at https://github.com/zhoujingchun03/SMDR-IS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.