Abstract

Rechargeable aqueous zinc-ion batteries are regarded as promising energy storage devices due to their attractive economic benefits and extraordinary electrochemical performance. However, the sluggish Zn2+ mass transfer behavior and water-induced parasitic reactions that occurred on the anode-electrode interface inevitably restrain their applications. Herein, inspired by the selective permeability and superior stability of plasma membrane, a thin UiO-66 metal-organicframework layer with smart aperture size is ex-situ decorated onto the Zn anode. Experimental characterizations in conjunction with theoretical calculations demonstrate that this bio-inspired layer promotes the de-solvation process of hydrated Zn2+ and reduces the effective contact between the anode and H2 O molecules, thereby boosting Zn2+ deposition kinetics and restraining interfacial parasitic reactions. Hence, the Zn||Zn cells could sustain a long lifespan of 1680h and the Zn||Cu cells yielded a stable coulombic efficiency of over 99.3% throughout 600 cycles under the assistance of the bio-inspired layer. Moreover, pairing with δ-MnO2 cathode, the full cells also demonstrate prominent cycling stability and rate performance. From the bio-inspired design philosophy, this work provides a novel insight into the development of aqueous batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.