Abstract
Microbial cell factories using a single carbon source (e.g., sugars) have been used to produce a wide variety of chemicals. However, this process is often accompanied by stoichiometric constraints on carbons and redox cofactors. Here, a synthetic pathway was designed and constructed in Escherichia coli to synergistically use glucose and formate as mixed carbon sources. By optimizing this synthetic pathway via enzyme mining, protein engineering, and bioprocess approaches, the yield of pyruvate from glucose was enhanced to 94% of the theoretical glycolysis yield, reaching 1.88 mol/mol. Finally, the optimized synthetic pathway was integrated with a phosphite reductase-based NADH regeneration system in malate-producing E. coli, resulting in the conversion of glucose into l-malate with a high yield of up to 1.65 mol/mol. This synergistic carbon metabolism strategy can be used to establish carbon- and energy-efficient productive processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.