Abstract
The present research aimed to evaluate the photocatalytic activity of reduced graphene oxide and manganese ferrite nanocomposite supported on eucalyptus wood ash waste (WA) from industrial boilers, for the decolorization of methylene blue (MB) solutions, using sunlight as an irradiation source. For this, the photocatalyst named MnFe2O4-G@WA was synthesized by a solvothermal method and characterized by analyzes of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller and zeta potential. Firstly, the photocatalyst was evaluated for photocatalytic decolorization of MB under different reaction conditions. Then, the influence of pH, photocatalyst dose and H2O2 was evaluated. MnFe2O4-G@WA showed 94% of efficiency for photocatalytic decolorization of MB under operating conditions of solar irradiation, 0.25 g/L of catalyst, 300 mg/L of H2O2. The proposed degradation reaction mechanism suggested that the photodegradation of MB was through a synergistic mechanism of photocatalysis and photo-Fenton reactions, with the combined action of the three materials used. The data adjusted to the first order kinetics from the Langmuir–Hinshelwood model. In addition, MnFe2O4-G@WA showed high stability, maintaining its efficiency above 90% after 5 cycles. The results indicated that the nanophotocatalyst is a potential technology for the decolorization of MB solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.