Abstract
Machine learning (ML) has taken drug discovery to new heights, where effective ML training requires vast quantities of high-quality experimental data as input. Non-absorbable oral drugs (NODs) have unique safety advantage for chronic diseases due to their zero systemic exposure, but their empirical discovery is still time-consuming and costly. Here, a synergistic ML method, integrating small data-driven multi-layer unsupervised learning, in silico quantum-mechanical computations, and minimal wet-lab experiments is devised to identify the finest NODs from massive inorganic materials to achieve multi-objective function (high selectivity, large capacity, and stability). Based on this method, a NH4-form nanoporous zeolite with merlinoite (MER) framework (NH4-MER) is discovered for the treatment of hyperkalemia. In three different animal models, NH4-MER shows a superior safety and efficacy profile in reducing blood K+ without Na+ release, which is an unmet clinical need in chronic kidney disease and Gordon's syndrome. This work provides a synergistic ML method to accelerate the discovery of NODs and other shape-selective materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.