Abstract
Interactions between dopamine and glutamate receptors are essential for the prefrontal cortical (PFC) and hippocampal cognitive functions. In order to understand the molecular basis of dopamine/glutamate interactions in rat PFC and hippocampus, we investigated (a) the effect of in vitro dopamine D1 receptor stimulation on glutamate N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits' phosphorylation and (b) the signal transduction pathway underlying these interactions, by examining the involvement of D1–extracellular regulated kinase 1/2 (ERK1/2) and D1/protein kinase A (PKA)/dopamine- and cyclic AMP-regulated phosphoprotein-32 (DARPP-32) signaling pathways. Furthermore, we compared the D1/NMDA/AMPA receptor interactions seen in PFC and hippocampus with those appearing in striatum, in which the D1 receptors' density is the highest within the mammalian brain. Our results showed that stimulation of D1 receptor by the specific agonist SKF38393 (10 μM) in PFC and hippocampal slices significantly increased the phosphorylation state of NR1ser897 and NR2Bser1303 subunits of NMDA receptor and of the GLUR1 (ser831 and ser845) subunit of AMPA receptor, as well as of ERK1/2, but not of DARPP-32. Interestingly, co-stimulation of D1 and NMDA receptors with an ineffective dose of SKF38393 (2 μM) and NMDA (5 μM) respectively, elevated further the phosphorylation level of NMDA and AMPA receptor subunits, as well as of ERK1/2, but not of DARPP-32. The D1- and D1/NMDA-induced phosphorylations were totally inhibited by SL327 (specific ERK1/2 inhibitor). Conversely, in striatal slices our data confirm that the D1-mediated phosphorylation of NMDA and AMPA receptor subunits relies on D1/PKA/DARPP-32 signaling. In conclusion, in PFC and hippocampus: (a) a strong synergistic interaction of D1 and NMDA receptors exists, which results in a significant ERK1/2 pathway activation, (b) the D1 and the D1/NMDA receptor-induced phosphorylation of NMDA and AMPA receptor subunits seems to rely on ERK1/2 signaling and could to some extent underlie the enhancement of NMDA and AMPA receptor currents mediated by D1 receptor activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.