Abstract

ABSTRACT The vermiremediation potential of Eudrilus eugeniae was assessed in heavy metals (HMs) contaminated soil in a microcosm experiment. In detail, efficacy of E. eugeniae was investigated in terms of reduction in HMs content, enhancement in the soil enzyme activities, synergistic correlation between the HMs and enzyme activities and bioaccumulation of HMs in the earthworm’s biomass. Moreover, a seed germination assay was also conducted to assess the HMs toxicity in soil after remediation. The results showed that Eudrilus eugeniae was capable of decreasing the Cu, Zn, Mn, Cr, and Ni contents in the soil by 17.56–26.30% after 90 days of experimental trial. Introduction of E. eugeniae increased cellulase, amylase, polyphenol oxidase, peroxidase, urease, dehydrogenase, and catalase activities by 30.3–80.95% compared to controls. Earthworm addition led to a 12.98% increase in G-Mean and 2.89% increase in T-QSI values, indicating significant soil health improvement. PCA revealed the negative impact of HMs on synergistic enzyme activities during vermiremediation. HMs content in earthworm biomass increased 13-fold. Seed germination assay confirmed HMs reduction by the end of the experiment. Thus, this study demonstrated the interconnected changes in the soil enzyme activities during vermiremediation of HMs from crude oil polluted soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call