Abstract

Practical sensing applications such as real-time safety alerts and clinical diagnoses require sensor devices to differentiate between various target molecules with high sensitivity and selectivity, yet conventional devices such as oxide-based chemo-resistive sensors and metal-based surface-enhanced Raman spectroscopy (SERS) sensors usually do not satisfy such requirements. Here, a label-free, chemo-resistive/SERS multimodal sensor based on a systematically assembled 3D cross-point multifunctional nanoarchitecture (3D-CMA), which has unusually strong enhancements in both "chemo-resistive" and "SERS" sensing characteristics is introduced. 3D-CMA combines several sensing mechanisms and sensing elements via 3D integration of semiconducting SnO2 nanowire frameworks and dual-functioning Au metallic nanoparticles. It is shown that the multimodal sensor can successfully estimate mixed-gas compositions selectively and quantitatively at the sub-100 ppm level, even for mixtures of gaseous aromatic compounds (nitrobenzene and toluene) with very similar molecular structures. This is enabled by combined chemo-resistive and SERS multimodal sensing providing complementary information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.