Abstract

The solidification/stabilization technique recommended for the disposal of municipal solid waste incineration (MSWI) fly ashes in developed countries was inappropriate for the treatment in most developing counterparts. In this study, the diatomite and MoS2 nanosheets were synergistically employed to activate the self-alkali-activated cementation of the MSWI fly ashes to achieve efficient solidification, the immobilization of heavy metals (HMs), and the inhibition of chloride release. The compressive strength of 28.61 MPa and the leaching toxicities (mg/L) of Zn, Pb, Cu, Cd, and Cr of 2.26, 0.87, 0.5, 0.06, and 0.22 were obtained from the hardened mortars. Diatomite significantly influenced the self-alkali-activated cementation of the MSWI fly ashes while MoS2 nanosheets played both roles in intensifying the stabilization of HMs and strengthening the binding process by inducing the formation of sodalite and kaolinite, enhancing the growth rates of nucleation, and transforming the layered cementation to the partial and full three-dimensional cementation in the hardened matrix. This study not only verified the feasibility of diatomite and MoS2 in activating the self-alkali-activated cementation of the MSWI fly ashes but also supplied a reliable technique for the harmless disposal and efficient utilization of MSWI fly ashes in developing countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call